Effects of Transcranial Direct Current Stimulation (TDCS) on Sleep-Dependent Memory Consolidation in Elderly Healthy Subjects

Torsten Eggert & Heidi Danker-Hopfe

Competence Center for Sleep Medicine
Charité Center 15 for Neurology, Neurosurgery and Psychiatry
Hindenburgdamm 30, 12203 Berlin, Germany
No Effects of Slow Oscillatory Transcranial Direct Current Stimulation (tDCS) on Sleep-Dependent Memory Consolidation in Healthy Elderly Subjects

Torsten Eggerta,*, Hans Dorna, Cornelia Sautera, Michael A. Nitscheb, Malek Bajboujc,d, Heidi Danker-Hopfea

aCompetence Centre of Sleep Medicine, Charité – University Medicine, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany
bDepartment of Clinical Neuropsychology, Georg-August-University, Göttingen, Germany
cDepartment of Psychiatry and Psychotherapy, Charité – University Medicine, Berlin, Germany
dCluster of Excellence “Languages of Emotion”, Humboldt Institute for Neuroimaging of Emotion (D.I.N.E.), Freie University Berlin, Germany
Boosting slow oscillations during sleep potentiates memory

Lisa Marshall¹, Halla Helgadóttir¹, Matthias Mölle¹ & Jan Born¹

A bifrontal anodal slow oscillating tDCS with a frequency of 0.75 Hz during early slow wave sleep
• had a positive effect on overnight declarative memory consolidation
• increased EEG power in the slow oscillation and in the slow sleep spindle frequency band compared to sham so-tDCS
Basics of Sleep (Sleep Stages)

Two different types of sleep

Increase in slow wave activity
NonREM-sleep
- NREM1 / N1
- NREM2 / N2
- SWS / N3

Phases of activation
REM-Sleep / stage R
REM = Rapid Eye Movements

Dream sleep

Additionally stage Wake can be identified
Basics of Sleep (Sleep Stages: EEG Characteristics)

- W: Wake with Alpha
- N2: Stage 2
- S3: Stage 3
- S4: Stage 4
- R: REM

From Feinberg and Campbell (2010)

- Sleep spindles
- δ-waves with high amplitude low frequency
Declarative memories are temporarily encoded during the day and become reactivated during the night. Slow oscillations (<1 Hz) exert a temporal synchronizing influence on both hippocampal reactivations and thalamic spindle activity in order to ensure that both activities reach the neocortex nearly at the same time.
constant (c)-tDCS vs. slow oscillatory (so)-tDCS

From Bergmann et al. (2009)

- **c-tDCS:**
 Application of a constant current for a certain time

- **so-tDCS:**
 Application of an oscillating current for a certain time
 - if the stimulation signal resembles the ongoing brain activity (resonance), it enables an interaction with these endogeneous oscillatory brain activities
Participants

23 individuals (14 ♀; 9 ♂) participated (mean age: 69.3 years, SD= 8.0; age range: 60-90 years)

Inclusion criteria:
- age ≥ 60 years
- no sleep disturbances currently or in the past
- No irregular sleep-wake rhythm

Exclusion criteria:
- cognitive impairments
- CNS-active medications
- untreated medical condition
- any medical, neurological or psychiatric condition, which has a clinically significant effect on sleep and/or vigilance
- smoker
Study Design

1) Adaptation night to screen for sleep disturbances by polysomnography (Apnea-hypopnea Index >15; Periodic limb movement arousal Index > 15)

 ↓ 1 day

2) First experimental night (verum or sham stimulation)

 ↓ 1 week

3) Second experimental night (verum or sham stimulation)

Assignment of stimulation conditions followed a double-blind, randomised, cross-over design

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18:30/19:15 – 21:00</td>
<td>Fixation of EEG and stimulation electrodes</td>
</tr>
<tr>
<td>21:00 – 22:30 (learning)</td>
<td>ct, mt</td>
</tr>
<tr>
<td>23:00 – 06:30 (sleep)</td>
<td>verum or sham stimulation (ct, mt)</td>
</tr>
<tr>
<td>07:00 – 08:00 (retrieval)</td>
<td>mt, ct</td>
</tr>
<tr>
<td>08:00 – 09:00</td>
<td>Removal of all electrodes</td>
</tr>
</tbody>
</table>

c_t = control tasks; m_t = memory tasks
Memory Tasks

• **word pair test (declarative)**
 - 54 German word pairs (e.g. instrument – trumpet)
 - 2 different word lists
 - learning criterion: 60 % correct responses

• **finger-tapping (procedural)**
 - five-digit sequences
 - 2 different sequences
 - 12 x 30 sec sessions

1 1 2 3 4
* - * - * - _ - _
- 12 x 30 sec sessions
DC Stimulator / Electrode Positions

„eldith“ DC stimulator plus (neuroConn GmbH,Ilmenau, Germany)

red = EEG electrodes; brown = reference; blue = ground; green = stimulation electrodes
Stimulation Paradigm

- Type of stimulation: sinus
- Current strength: 0.26 mA
- Current density: 0.331 mA/cm²
- Frequency: 0.75 Hz
- Fade in/out [s]: 2 * 8 s

1 cycle = 1.33 s = 0.75 Hz

6 cycles = 8 s

215 cycles
Data Analysis

- performances in memory tasks

- sleep scoring of the five stimulation free intervals

- sleep spindle density (slow and fast sleep spindles) within the five stimulation free intervals

- EEG power in the following frequency bands (calculated as differences between the stimulation free intervals and a 1 minute baseline interval before stimulation):
 - 0.5-1 Hz
 - 1-1.5 Hz
 - 1-4 Hz
 - 8-12 Hz
 - 12-15 Hz
Results - Declarative Memory Task

A

- Word pairs
- Evening vs. Morning
- P < 0.001

- Overnight change in word pairs
- Verum vs. Sham
- P = 0.076

Charité Campus Benjamin Franklin
Universitätsmedizin Berlin
Results - Procedural Memory Task

B

$P = 0.001$

$P = 0.011$

n.s.

Correct sequences

Overnight change in correct sequences

evening morning

Verum

Sham

Verum

Sham

Evening morning
Results – Sleep Scoring / Spindle Analysis

<table>
<thead>
<tr>
<th></th>
<th>Verum stimulation [mean ± SEM]</th>
<th>Sham stimulation [mean ± SEM]</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unidentified</td>
<td>0.9 ± 0.6</td>
<td>0.0 ± 0.0</td>
<td>ns<sup>b</sup></td>
</tr>
<tr>
<td>Wake</td>
<td>61.3 ± 14.6</td>
<td>24.3 ± 7.7</td>
<td>0.018<sup>a</sup></td>
</tr>
<tr>
<td>REM</td>
<td>11.3 ± 6.5</td>
<td>7.8 ± 4.3</td>
<td>ns<sup>b</sup></td>
</tr>
<tr>
<td>NREM stage 1</td>
<td>30.9 ± 7.2</td>
<td>20.4 ± 6.5</td>
<td>ns<sup>a</sup></td>
</tr>
<tr>
<td>NREM stage 2</td>
<td>132.6 ± 16.2</td>
<td>152.6 ± 17.4</td>
<td>ns<sup>a</sup></td>
</tr>
<tr>
<td>NREM stage 3</td>
<td>38.7 ± 7.0</td>
<td>64.3 ± 12.8</td>
<td>0.030<sup>b</sup></td>
</tr>
<tr>
<td>NREM stage 4</td>
<td>23.5 ± 10.8</td>
<td>21.7 ± 7.9</td>
<td>ns<sup>b</sup></td>
</tr>
<tr>
<td>SWS</td>
<td>62.2 ± 14.4</td>
<td>86.1 ± 19.7</td>
<td>ns<sup>b</sup></td>
</tr>
<tr>
<td>Total</td>
<td>299.1 ± 0.9</td>
<td>291.3 ± 4.3</td>
<td>ns<sup>b</sup></td>
</tr>
</tbody>
</table>

^a t-test for paired observations.

^b Wilcoxon matched-pairs signed-ranks test.

Slow frontal and fast parietal spindle densities for both stimulation conditions.

<table>
<thead>
<tr>
<th></th>
<th>Verum stimulation [mean ± SEM]</th>
<th>Sham stimulation [mean ± SEM]</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow frontal spindle density</td>
<td>2.25 ± 0.30</td>
<td>2.24 ± 0.29</td>
<td>ns<sup>a</sup></td>
</tr>
<tr>
<td>Fast parietal spindle density</td>
<td>2.99 ± 0.30</td>
<td>3.24 ± 0.36</td>
<td>ns<sup>a</sup></td>
</tr>
</tbody>
</table>

Slow vs. fast: verum stimulation: \(P = 0.022^a \); sham stimulation: \(P = 0.002^a \).

SEM = standard error.

^a t-test for paired observations.
Discussion

Deviating results could be explained:
- by fundamental changes in sleep architecture with age,
- As frequency and amplitude of the EEG decreases with age, it could be assumed that the stimulation signal might not have perfectly met ongoing brain oscillations in the elderly.
Outlook

• Focus of new tDCS study on

 ➢ Age-specific differences in sleep-dependent memory consolidation by adding a sample of young adults

 ➢ Gender-specific differences in sleep-dependent memory consolidation

• Collaboration with Theo Samaras

• Further suggestions on how to adjust the stimulation signal for the elderly?
Thank you for your attention!

